The Bias Evaluator
In order to test the model on the coreference tasks follow this tutorial
Module for detecting gender bias in Danish language models.
Source code in genda_lens/genda_lens.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
evaluate_coref(test, model)
Evaluate gender bias in a coreference model.
This function can be used for running two different tests: The Dawinobias Language Coreference Task and the ABC Coreference Task. Read more about the specifics of these test in the User Guide.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test |
str
|
choose between "abc" or "dawinobias" |
required |
model |
_type_
|
a coreference model object. |
required |
Returns:
Name | Type | Description |
---|---|---|
list |
df
|
Performance output as list. First element: performance in condensed form. Second element: performance in detailed form. |
EXAMPLE
from genda_lens import Evaluator
# load coref model
from danlp import load_xlmr_coref_model
model = load_xlmr_coref_model()
# initiate evaluator
ev = Evaluator(model_name="danlp-xlmr")
# run abc test
output = ev.evaluate_coref(test="abc", model=model)
# retrieve output
simple_output = output[0]
detailed_output = output[1]
Source code in genda_lens/genda_lens.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
evaluate_ner(n)
Evaluate gender bias in a NER model. This function can be used for running the DaNe dataset test. Read more about the specifics of these test in the User Guide.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
Number of repetitions to run the augmentation pipeline. To ensure robustness we recommend a value of n => 20. |
required |
Returns:
Name | Type | Description |
---|---|---|
list |
df
|
Performance output as list. First element: performance in condensed form. Second element: performance in detailed form. |
EXAMPLE
from genda_lens import Evaluator
# initiate evaluator
ev = Evaluator(model_name="huggingface-modelname")
# run test
output = ev.evaluate_ner(n=20)
# retrieve output
simple_output = output[0]
detailed_output = output[1]
Source code in genda_lens/genda_lens.py
evaluate_pretrained(test, mask_token=None, start_token=None, sep_token=None)
Evaluate gender bias in a pre-trained model trained with masked language modeling.
This function can be used for running two different tests: The Dawinobias Language Modeling Task and the ABC Language Modeling Task. Read more about the specifics of these test in the User Guide.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test |
str
|
choose between "abc" or "dawinobias" |
required |
mask_token |
str
|
mask token of tested model. Specify when running test "abc". Defaults to None. |
None
|
start_token |
str
|
start token of tested model. Specify when running test "abc". Defaults to None. |
None
|
sep_token |
str
|
sep token of tested model. Specify when running test "dawinobias". Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
df
|
Performance output as list. First element: performance in condensed form. Second element: performance in detailed form. |
EXAMPLE
from genda_lens import Evaluator
# initiate evaluator
ev = Evaluator(model_name="huggingface-modelname")
# run abc test
output = ev.evaluate_pretrained(test="abc", mask_token="<mask>", start_token="<s>", sep_token="</s>")
# retrieve output
simple_output = output[0]
detailed_output = output[1]
Source code in genda_lens/genda_lens.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|